Ensemble classifiers for drift detection and monitoring in dynamical environments
نویسندگان
چکیده
Detecting and monitoring changes during the learning process are important areas of research in many industrial applications. The challenging issue is how to diagnose and analyze these changes so that the accuracy of the learning model can be preserved. Recently, ensemble classifiers have achieved good results when dealing with concept drifts. This paper presents two ensembles learning algorithms BagEDIST and BoostEDIST, which respectively combine the Online Bagging and the Online Boosting with the drift detection method EDIST. EDIST is a new drift detection method which monitors the distance between two consecutive errors of classification. The idea behind this combination is to develop an ensemble learning algorithm which explicitly handles concept drifts by providing useful descriptions about location, speed and severity of drifts. Moreover, this paper presents a new drift diversity measure in order to study the diversity of base classifiers and see how they cope with concept drifts. From various experiments, this new measure has provided a clearer vision about the ensemble’s behavior when dealing with concept drifts 1 .
منابع مشابه
Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل